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Correspondence

On Longitudinal Waves in a

Hot-Nonuniform Plasma

Recently, measurements have been made
of wave propagation whose characteristic
velocities have been on the order of the speed
of sound for the electron gas, (Yk T/m)l{Z
where -y is a constant on the order of unity
[1], [2]. Harmonic generation of these
modes has been detected [3], [4] and they

have been used to study drift velocities in

the positive column of a mercury vapor dis-
charge tube [5 ]. In this correspondence, we

will study the propagation of these tempera-

ture dependent waves in a slightly inhomo-

geneous hot plasma. The positive column of

a mercury vapor discharge possesses this

slight inhomogeneity in its “long” dimen-
sion [6].

The equation of motion for electrons in
an electron gas at rest is

Nm~= –Ne[E+5X~]–grad P (1)

where N= the electron density, P = ~Nk T.,
T.= electron temperature and ~ (the com-

pression constant) is on the order of

unity [71.
With a time dependence of the form

&~, (1) combined with Maxwell’s equations,

and the definitions for conduction current
and charge density, one can obtain the wave
equation for a wave in a plasma. By lineariz-
ing, one obtains (see Appendix)

&r’
curl curl E — — @ — at grad div ~~’

+$0 grad NO div ~ = O (2)

where

‘,=(’-:) “2=%
and No is the steady-state electron density.
It has been assumed that T. is a constant
even though isothermal conditions do not
exist. For some idealized cases, this can be
be effected by a suitable choice of y.

Equation (2) is the general wave equa-

tion for an inhornogeneous hot electron
plasma. The first two terms correspond to

the usual wave equation with a space-
dependent dielectric constant; the third

term gives the effect of the electron tempera-
ture, and the last term originates from an
electric field caused by a static density
gradient [8], [9].

In an infinite homogeneous medium, it is
not difficult to show that with plane waves
propagating in the z direction with a z de-
pendence of the form e–@z, that a resulting
dispersion relation is of the form

(‘+4 (’-%3’=0‘3)
which yields a longitudinal mode when above
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the plasma frequency with a phase velocity
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At this point, we are going to direct our

attention to this longitudinal or hot plasma
mode only and assume it to be excited and
propagating in the direction of the in-
homogeneity of the plasma. Equation (2)

can then be written as

where the coefficient ~ has been added to
separate terms that cause difficulty in the
solution, whereko = co/c, and the dot indicates
d/d.. Assuming the bracketed term to be
small, a condition that requires the plasma
to have only a slight gradient with respect
to Z, it will be shown that this equation can
besolvedapproximately analytically using the

technique of variation of parameters [10].
Following the procedure for variation of

parameters, one first solves (5) with ~= O or

E,+$E. =O

whose solution is

‘z= ‘Z’cos (%2+0)

(6)

Let @= (kO/a)z+8 and let E.O and o be

functions of Z. One therefore obtains

l& cos ~ – E,oe sin ~ = O

from which one can write

fzo “
— = ~ sinz * – flpz ~ cos * sin $. (9)
E,o c1

With a known variation of number

density No and a known temperature a,
(9) can be solved for o and E,o, the results
substituted into (i’), and the longitudinal
field will then be known for any z explicitly.

If these were not exactly known and
since we have previously restricted the
bracketed term to be small, i.e., nonrapidly
varying, we ca~ determine the average
values of d and E.o/EM to be

[e]..=-y: (lo)

which can then be integrated to yield

& = c2E@o/2m)~. (11)

Substituting (11) into (7), one finally obtains

for the longitudinal field

Ez = c@OfmrOJZ

“Cos{:(’-%)z+c+“2)
The constants Cl and Cj can be determined

from initial conditions. One immediately

recognizes that the term (1 — Qp2/2) is the

expansion of the underdense relative di-

electric constant <cfll/co, an expected
result.

One observes that this longitudinal wave
propagates with a propagation constant that

is temperature dependent and decays
(or grows) as a function of the inhomogeneity

of the plasma. This decay (growth) is in

addition to that predicted by Landau and
calculated by Fried and Gould [11]. Al-

though their calculations are for a homo-

geneous plasma, it might be interesting to

compare the Landau damping in the homo-

geneous case with that expected in the in-
homogeneous case considered in this work.

It must be pointed out though, that recent
calculations by Harker indicate that Landau
damping may not occur in certain cases
where the distribution is parabolic [12].

However in the homogeneous case, we

would expect Landau damping and from
Fried and Gould, we can estimate the

e-folding distance. With the ratio of
VPk.,~/wrb,,~d = 2, they calculate the damping
ratio (y/k) /~Tk.malw 1/4. With the phase

velocity defined as cc/k, one can show that

the e-folding distance is

(13)

In a typical mercury vapor discharge
plasma, one can estimate this distance to be
4/rr m at a frequency of 2 me/s. From the
measurements of Agdur et al. [6], one can

estimate the e-folding distance from our

consideration to be 0.43 meters for the case

of a discharge current of 1 ampere.1 At very
high frequencies, this effect would most
probably be negated by the Landau damp-
ing. In addition, one must be cognizant of

the collisional damping which we have
neglected in this calculation.

Since this longitudinal wave possesses an
amplitude term that is a function of the
density and a phase term that is a function
of the temperature and density, one is led
to postulate an application of this wave as
diagnostics with microwaves to determine

I One notes that there is a drift velocity associated
with this tube. This would indicate that we should
consider this in deriving the wave equation (2). How-
ever, an estimate of the phase velocity from (4) indi-
cates it is much larger than the measured drift velocity
[4]; we therefore neglect it.
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the number density and temperatrrre of a
hot inhomogeneous plasma. This could be

done by measuring the phase and the ampli-

tude of the wave as a function of z.

APPENDIX

DERIVATION OF THE WAVE EQUATION IN A

HOT INHOMOGENEOUS STATIONARY PLASMA

Assume all quantities are of the form

A o+A 1where A o indicates time-independent
quantities and Al indicates time-varying

quantities. Further assume that the ions of
density No are smeared out and stationary

to form a. neutralizing background. The in-
stantaneous charge density

p = –- (No+ IVJ6+NF3 = – Nle (14)

and current

~= – (No+iVJe(ZJ = –iVOeih (15)

together with Maxwell’s equations

(17)

div %3= p (18)

lead to expressions (with assumed time
dependence &$)

NI =: ‘:$lVZI. (20)

The linearized equation of motion (1)

yie~ds two terms

- eN@o - grad PO = O (21)

zbmN& = - eN@o – eNo~l - grad PI. (22)

Combining (19) to (22) together with an

assumed equation of state p = yNk T, one
obtains the wave equation (2).
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Comments on Excitation of Spin

Waves by Wire Arrays

Messrs. LaRosa and Vasilel

Kaufman and Soohooz have suggested

that spin waves involving exchange forces

can be excited by means of a fine wire at the

end of a YIG crystal. It would be very
desirable to do this, for then the entire

crystal might be kept at a low enough dc
field to avoid coupling to acoustic waves. We
have made a detailed analysis of an array

of flat wires immersed in an infinite YIG
medium and also printed on the air-YIG

interface of a semi-infinite YIG medium.
The dc magnetic field has been taken both
perpendicular to the plane of the array and
parallel to the array conductors.

One idea which runs through the litera-

ture on the subject is that the rapid decay

of the exciting field in the desired propaga-

tion direction should enable some net cou-

pling to be obtained to the very short wave-

length (10~ cm) exchange spin waves.
Accordingly, the currents in the adjacent

wires were assumed to be oppositely di-
rected. The assumption of an infinite array
enabled the boundary value problem to be
solved in rectangular coordinates. The mag-
netic field and the RF magnetization com-
ponent could be expressed in terms of

Fourier sine and cosine series as functions of
the coordinate along the array (perpendicu-
lar to the conductors). No variation along

the conductors was assumed. The variation
perpendicular to the array has several

propagation constant values given by a

dispersion relation for each orientation of

the dc field.
For the dc field perpendicular to the

array, four values of wave vector k were
found.

1) Low-k (electromagnetic). Decaying in
propagation direction.

2) Medium-k propagating. Similar to
magnetostatic waves (group velocity

opposite to phase velocity).
3) High-k propagating. Involving ex-

change forces, obeying rP/-y = Hi +ZY,m
azkz.

4) High-k, nonpropagating. Circular

polarization sense opposite to the high-

1 Manuscript received November S, 1965.
z I. Kaufman and R. F. Soohoo, “Properties and

excitation of spin waves--A new microwave time
delay medium,” presented at 1964 PTGMTT Inter.
national Symposium.

k propagating. Obeying dispersion
relation — u/~= ~~+~,= azkz (,42 ,rlega-

tive).

It was found that for all conductor

widths and spacings, only low-k waves were
excited. In fact, the ability of the low-k
waves to satisfy the boundary conditions is
enhanced by decreasing the width and spac-
ing of the conductors. The plausibility
argument for this is that the electromagnetic
field of the conductors without any YIG

obeys very closely Laplace’s equation,, i.e.,

k = O. Therefore, there is no variation irl the
exciting field which tends to displace the
spins against the exchange forces. Very close

conductor spacing creates a fast decay per-
pendicular to the array and an equally fast
periodic variation along the array. The sec-
ond derivatives in the two directiom are
equal and opposite and the Laplacian is zero.

The situation is slightly ciifferent with

the dc field parallel to the wires. The close-
ness of the conductors drops out of the dis-

persion relation. Three values of k are per-

mitted.

1)

2)

3)

Low-k (electromagnetic) becomes

high-k nonpropagating as the field is

increased.

High-k propagating b(!comes ‘tow-k

as the field is increased.
High-k nonpropagating remains
about the same.

There is a restricted range of field in

which 1) and 2) become comparable, SC)that
true spin waves involving exchange fx-ces
are excited. However, good excitation of
propagating spin waves occurs only for spin

wavelengths comparable to or greater than
elastic wavelengths. Also, this region is very

narrow band.

The transmission line analog used by

Kaufman and Soohoo3 assumes single mode
propagation and reduces a tiwo- or three-
dimensional problem to a one-dimensional
problem. The actual magnetic field cf the
conductor is replaced by sources distributed
along the transmission line. This distributed
source analog is based on Sch10mann,4
equation (1 O), which we believe to be a mis-
interpretation, as follows.

The equations of motion give the sus-

ceptibility tensor which relates the RF
magnetization to the RF magnetic field in a

gyrotropic medium. This tensor expresses

the effects of forces impcwed by the local
magnetic field and the exchange forces on

the spin dipole moments. These forces cause
precession at an amplitude and rate con-
sistent with the magnetog yric ratio.

When the susceptibility tensor is in-
serted in Maxwell’s equaticms, a set of
homogeneous equations can be obtained for

either the magnetization or the magnetic
field. The dispersion relation iis obtained by
setting the determinant equal to zero.

There are no source terms involved in
the interior of the region. Amplitudes are
determined by matching sohr tions at boun-

daries.
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