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On Longitudinal Waves in a
Hot-Nonuniform Plasma

Recently, measurements have been made
of wave propagation whose characteristic
velocities have been on the order of the speed
of sound for the electron gas, (vET/m)'2
where v is a constant on the order of unity
[1], [2]. Harmonic generation of these
modes has been detected [3], [4] and they
have been used to study drift velocities in
the positive column of a mercury vapor dis-
charge tube [5]. In this correspondence, we
will study the propagation of these tempera-
ture dependent waves in a slightly inhomo-
geneous hot plasma. The positive column of
a mercury vapor discharge possesses this
slight inhomogeneity in its “long” dimen-
sion [6].

The equation of motion for electrons in
an electron gas at rest is
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where N=the electron density, P=yNkT,,
T.=electron temperature and v (the com-
pression constant) is on the order of
unity [7].

With a time dependence of the form
¥t (1) combined with Maxwell’s equations,
and the definitions for conduction current
and charge density, one can obtain the wave
equation for a wave in a plasma. By lineariz-
ing, one obtains (see Appendix)
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and Ny is the steady-state electron density.
It has been assumed that T, is a constant
even though isothermal conditions do not
exist. For some idealized cases, this can be
be effected by a suitable choice of .

Equation (2) is the general wave equa-
tion for an inhomogeneous hot electron
plasma. The first two terms correspond to
the usual wave equation with a space-
dependent dielectric constant; the third
term gives the effect of the electron tempera-
ture, and the last term originates from an
electric field caused by a static density
gradient [8], [9].

In an infinite homogeneous medium, it is
not difficult to show that with plane waves
propagating in the z direction with a z de-
pendence of the form ¢ that a resulting
dispersion relation is of the form
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which yields a longitudinal mode when above
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the plasma frequency with a phase velocity

kT,
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At this point, we are going to direct our
attention to this longitudinal or hot plasma
mode only and assume it to be excited and
propagating in the direction of the in-
homogeneity of the plasma. Equation (2)
can then be written as
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where the coefficient u has been added to
separate terms that cause difficulty in the
solution, wherek,= w/¢,and the dot indicates
3/8,. Assuming the bracketed term to be
small, a condition that requires the plasma
to have only a slight gradient with respect
to 2, it will be shown that this equation can
besolvedapproximatelyanalytically using the
technique of variation of parameters [10].
Following the procedure for variation of
parameters, one first solves (5) with u=0 or
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Let ¢=(ko/a)z+0 and let E, and 6 be
functions of z. One therefore obtains
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from which one can write
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With a known wvariation of number
density Ny and a known temperature e,
(9) can be solved for 8 and E,, the results
substituted into (7), and the longitudinal
field will then be known for any z explicitly.

If these were not exactly known and
since we have previously restricted the
bracketed term to be small, i.e., nonrapidly
varying, we can determine the average
values of § and E,o/E.o to be
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which can then be integrated to yield
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Substituting (11} into (7), one finally obtains
for the longitudinal field
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The constants C; and Cs can be determined
from initial conditions. One immediately
recognizes that the term (1—Qp?/2) is the
expansion of the underdense relative di-
electric constant +/e;1/es, an expected
result.

One observes that this longitudinal wave
propagates with a propagation constant that
is temperature dependent and decays
(or grows) as a function of the inhomogeneity
of the plasma. This decay (growth) is in
addition to that predicted by Landau and
calculated by Fried and Gould [11]. Al-
though their calculations are for a homo-
geneous plasma, it might be interesting to
compare the Landau damping in the homo-
geneous case with that expected in the in-
homogeneous case considered in this work.
It must be pointed out though, that recent
calculations by Harker indicate that Landau
damping may not occur in certain cases
where the distribution is parabolic [12].

However in the homogeneous case, we
would expect Landau damping and from
Fried and Gould, we can estimate the
e-folding distance. With the ratio of
Uphase/UThermal = 2, they calculate the damping
ratio (y/k)/vThermat~1/4. With the phase
velocity defined as w/%, one can show that
the e-folding distance is

4 Uphase
= f

In a typical mercury vapor discharge
plasma, one can estimate this distance to be
4/7 m at a frequency of 2 mc/s. From the
measurements of Agdur et al. [6], one can
estimate the e-folding distance from our
consideration to be 0.43 meters for the case
of a discharge current of 1 ampere.! At very
high frequencies, this effect would most
probably be negated by the Landau damp-
ing. In addition, one must be cognizant of
the collisional damping which we have
neglected in this calculation.

Since this longitudinal wave possesses an
amplitude term that is a function of the
density and a phase term that is a function
of the temperature and density, one is led
to postulate an application of this wave as
diagnostics with microwaves to determine

D=

(13)

1 One noteg that there is a drift velocity associated
with this tube. This would indicate that we should
consider this in deriving the wave equation (2). How-
ever, an estimate of the phase velocity from (4) indi-
catesit ismuch larger than the measured drift velocity
[4]; we therefore neglect it.
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the number density and temperature of a
hot inhomogeneous plasma. This could be
done by measuring the phase and the ampli-
tude of the wave as a function of z.

APPENDIX

DERIVATION OF THE WAVE EQUATION IN A
Hor INHOMOGENEOUS STATIONARY PLASMA

Assume all quantities are of the form
Ao+A41where 4 indicates time-independent
quantities and A, indicates time-varying
quantities. Further assume that the ions of
density Ny are smeared out and stationary
to form a neutralizing background. The in-
stantanecus charge density

p=—(No+ Ne+ Nee = — Nie (14)
and current
= — (No+ Ne(@) = — Noetw  (15)
together with Maxwell's equations
aeoE

T = curl — (16)

? + curlE =0 (17)
div eoE =p (18)

lead to expressions (with assumed time
dependence )
(= E; — curl curl El) 19
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Ni= — 2 divE,. (20)
e
The linearized equation of motion (1)
yields two terms

b eNoEo — grad Pn =0 (21)

imeo% = - 6N1E0 - 6NOE1 - grad Pl. (22)
Combining (19) to (22) together with an
assumed equation of state p=+NkT, one
obtains the wave equation (2).
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Comments on Excitation of Spin
Waves by Wire Arrays

Messrs. LaRosa and Vasile

Kaufman and Soohoo* have suggested
that spin waves involving exchange forces
can be excited by means of a fine wire at the
end of a YIG crystal. It would be very
desirable to do this, for then the entire
crystal might be kept at a low enough dc
field to avoid coupling to acoustic waves. We
have made a detailed analysis of an array
of flat wires immersed in an infinite YIG
medium and also printed on the air-YIG
interface of a semi-infinite YI[G medium.
The dc magnetic field has been taken both
perpendicular to the plane of the array and
parallel to the array conductors.

One idea which runs through the litera-
ture on the subject is that the rapid decay
of the exciting field in the desired propaga-
tion direction should enable some net cou-
pling to be obtained to the very short wave-
length (10~® cm) exchange spin waves.
Accordingly, the currents in the adjacent
wires were assumed to be oppositely di-
rected. The assumption of an infinite array
enabled the boundary value problem to be
solved in rectangular coordinates. The mag-
netic field and the RF magnetization com-
ponent could be expressed in terms of
Fourier sine and cosine series as functions of
the coordinate along the array (perpendicu-
lar to the conductors). No variation along
the conductors was assumed. The variation
perpendicular to the array has several
propagation constant values given by a
dispersion relation for each orientation of
the de field.

For the dc field perpendicular to the
array, four values of wave vector k were
found.

1) Low-k (electromagnetic). Decaying in
propagation direction.

2) Medium-k propagating. Similar to
magnetostatic waves (group velocity
opposite to phase velocity).

3) High-k propagating. Involving ex-

change forces, obeying w/v=Hi+He
a’k?,
4) High-k, nonpropagating. Circular

polarization sense opposite to the high-

1 Manuscript received November 8, 1965.

2 J. Kaufman and R. F. Soohoo, “Properties and
excitation of spin waves—A new microwave time
delay medium,” presented at 1964 PTGMTT Inter-
national Symposium.
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k propagating. Obeying dispersion
relation —w/y=Hi-+H, a%? (k? nega-
tive).

It was found that for all conductor
widths and spacings, only low-%2 waves were
excited. In fact, the ability of the low-%
waves to satisfy the boundary conditions is
enhanced by decreasing the width and spac-
ing of the conductors. The plausibility
argument for this is that the electromagnetic
field of the conductors without any YIG
obeys very closely Laplace’s equation, i.e.,
k=0. Therefore, there is no variation in the
exciting field which tends to displace the
spins against the exchange forces. Very close
conductor spacing creates a fast decay per-
pendicular to the array and an equally fast
periodic variation along the array. The sec-
ond derivatives in the two directions are
equal and opposite and the Laplacian is zero.

The situation is slightly different with
the dc field parallel to the wires. The close-
ness of the conductors drops out of the dis-
persion relation. Three values of k are per-
mitted.

1) Low-k (electromagnetic) becomes
high-k nonpropagating as the field is
increased.

2) High-k propagating becomes low-k
as the field is increased.

3) High-k  nonpropagating
about the same.

remains

There is a restricted range of field in
which 1) and 2) become comparable, so that
true spin waves involving exchange forces
are excited. However, good excitation of
propagating spin waves occurs only for spin
wavelengths comparable to or greater than
elastic wavelengths. Also, this region is very
narrow band.

The transmission line analog used by
Kaufman and Soohoo? assumes single mode
propagation and reduces a two- or three-
dimensional problem to a one-dimensional
problem. The actual magnetic field of the
conductor is replaced by sources distributed
along the transmission line. This distributed
source analog is based on Schlsmann,?
equation (10), which we believe to be a mis-
interpretation, as follows.

The equations of motion give the sus-
ceptibility tensor which relates the RF
magnetization to the RF magnetic field in a
gyrotropic medium. This tensor expresses
the effects of forces imposed by the local
magnetic field and the exchange forces on
the spin dipole moments. These forces cause
precession at an amplitude and rate con-
sistent with the magnetogyric ratio.

When the susceptibility tensor is in-
serted in Maxwell's equations, a set of
homogeneous equations can be obtained for
either the magnetization or the magnetic
field. The dispersion relation is obtained by
setting the determinant equal to zero.

There are no source terms involved in
the interior of the region. Amplitudes are
determined by matching solutions at boun-
daries.
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